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Abstract-Loc<llization of deformation into a planar band in the incremental response of el<lsto­
plastic material is studied in the case of small strains and rot<ltions. The critical hardening modulus
for localizati~ln is given in an explicit form (uncoupled from the band norm,.!) for an arbitrary rate
independent non-associative plasticity. Loss of uniqueness of the resp~lnse is investigated in terms
of positiveness of the sC\:ond order work density. Criteria for loss of second order work positiveness
and localization arc compared for pkme stress and plane str'lin. In these cases. for the associative
flow rule. the threshold for the secllOd order work positiveness coincides with the threshold for
shear band formation. This coincidence may not. however. oCl:ur if IlKahzation into splitting mode
is attained.

I. INTRODUCTION

A macroscopically homogeneous material clement at a sufliciently low stress deforms in a
homogeneous manner when a homogeneous stress is applied at its boundary. When the
strain becomes larger it is inevitable that. due to actual irregularities in the distribution of
mass or stiffness, etc.. concentrations of high stress and/or strain occur. These con­
centr~ttionsm~ty lead to various forms ortocal damage of m~tterial.likedecohesion, fltulting.
nude~ttion of cavities or ~tdvanced slip of gmins, depending much on the type of materi~tl.

Forms, extent and interaction of these local singularities give rise to ditlcrent micro­
mechanisms of Illilure (Rice, 1976). Despite dilferences. the above local singularities have
a common Icature. which is the possibility of development into a macromechanism of
failure. When occurring over a sulliciently large volume. this behavior can be modeled in
terms of an c1astoplastic continuum. Then such a macromechanism is perceived as a
localization of strain over a mort: or less extenued area. As a result, the deformation of the
considered element ceases to be homogeneous.

A suitable tool for describing localization in terms ofcontinuum theory is the stmin rate
discontinuity (Rudnicki and Rice. 1975; Rice and Rudnicki, 19l:iO; Rice, 1976; Vardoulakis.
1976). The localization implies a non-uniqueness in the incremental dastoplastic response
ofa homogeneous, homogeneously strained body and. as shown by Rice (1976). also implies
a vanishing speed of acceleration waves (Hadamard. 1903; Thomas, 1961; Hill. 1962;
Mandel. 1966). This non-uniqueness consists of the possibility of the occurrence of more
than one strain rate pattern related to the equilibrated fundamental stress state. In particular.
a uniform stepwise strain rate field within a planar band superimposed on the homogeneous
strain rate lidd appears to be admissible. From the phenomenological point of view. the
band m~IY be viewed as ~l macroscopic represent~ltion of the concentration of the above
mentioned microstructural defects ~tnd/or microslips.

In general. the question of non-uniqueness of the elastoplastic increment~tl response
should be ~Iddressed in the context of a boundary value problem. as formulated by Hill
(1958. 1959. 1978) for associative flow-rule. or by Maier (1970). Hueckcl and Maier (1977).
Raniecki (1979) and Raniecki and Bruhns (1981) for non-associative flow rules. In this
context, sunicient conditions for uniqueness were formulated. In principle. any sunicient
condition for uniqueness is lost in the deformation process before the condition for a
particular form of non-uniqueness. such as a localization. is met. Therefore, a possibility
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exists that other forms of non-uniqueness occur before the condition of localized strain is
reached.

The question whether indeed the band formation can be preceded by other kinds of
non-uniqueness is crucial from the point of view of constitutive modeling. [n fact. it is
believed that a constitutive equation can only be used when localization of deformation is
excluded. After the localization is attained. the material behavior should be characterized in
different terms. such as fracture propagation in rock and concrete or the force-displacement
relationship at the shear band in soil (Rice. 1980; Ruina. 1980; Vardoulakis. 1981).

Until now an answer to the above question has been given for two classes of particular
conditions. The first class is very restrictive and consists of a prescribed motion over all the
boundary ofa homogeneously deformed and stressed e1astoplastic body with an associative
How rule. For this case. Hill (1962) has shown that the condition for vanishing speed of
acceleration waves. and therefore for strain localization. does coincide with the sutficient
condition for the loss of uniqueness of response which he previously gave (Hill. 1958; see
also Rice. 1976).

The second class refers to plane strain tension and compression in the presence of large
displacement gradients. For this case Hill and Hutchinson (1975) and Needleman (1979)
'lOalyzed the system of governing equations and found that while shear band localization
may occur when the system is hyperbolic. various forms of diffuse bifurcation may precede
the locali/ation. when the system is still elliptic. For cX<lmple. a diffuse n\.'Cking is shown to
occur during pl'll1e strain tension ofan incompressible m'ltcrial bInd. well before the shear
band forms.

The focus of the present work is on the loss of uniqueness and localizution in materials
cxhihiting strain-soflening and non-normality occurring at small strains and small rotations.
These elli:l.:ts arc typkal for soils and granular materials as well as for conl.:rete, masonry
and rock.

Two particular I.:riteria related to the uniqueness in the 10l.:al c1astoplastil.: response arc
disellssed in detail (Section 2). These arc loss of positiveness of second order work and
strain localization into a narrow bund. This choice is motiv'lted by the fact that the sullicient
criterion for uniqueness is ncwr violated if the sel.:oll{! order work density is positive
(Raniecki. 1979; Raniecki and Rruhns. 1l)~I). Moreover. the othl.·r possible criteria. i.e.
loss of strong e1liptkity and loss of positiveness of eigenvalues of the acoustic tcnsor
(Mandel. 1966). ol.:cur between. or coincide with. loss of positiveness of second order work
'lnd localization.

In Section 3 a del.:ouplcd form of the condition for localization given by Rice (1976)
has hccn ohtained for any smooth yield function and non-associative law in which critkal
hardening modulus and b'lIld inclination are expressed explicitly. An uncoupled form has
been available until now only for Drucker-Prager (Huber-von Mises as a purticular case)
yield surfaces (Rudnicki und Rice. 1975).

The formulation of the decoupled criterion for localization allows for a systematic
analysis of IOl.:alization modes and for comparison with the criterion for second order work
for general unconstrained (3-D) and constrained (plane stmin und plune stress) cases. Under
plane strain and plunc stress conditions, in the presence of the associative flow rule. the
formation of shear bands, as opposed to splitting mode discontinuity, implies a loss of
second order work positive definiteness (Rigoni and Hueckel. 1990a). For non-associative
plasticity. such cireumst'lOees were not found in u general unconstrained cuse. nor in phllle
strain and plane stress (Section 4).

1. NON·UNIQUENESS THRESHOLDS IN ELASTOPLASTIC RATE PROBLEMS

A sullicient criterion for uniqueness of a generic boundary value problem. in which
static and kinematic constraints arc imposed on specific portions of the boundary, may be
obtained from a straightforward application of the virtual work principle (Hill. 1958) in
the form:
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(I)

provided that the stress and strain rate fields,1d and,1i fulfil null traction rate and velocities
conditions at appropriate portions of the boundary of the body of volume V.t Here. tI and
£ are the second order tensors of stress and strain respectively. a dot denotes a rate and .1
refers to a difference between two alternative admissible fields.

The further analysis is restricted to elastic-plastic solids in which stress and strain rates
arc related through a fourth order tensor D in general non-symmetric:

d = D:i. (2)

Tensor D is different in loading and in unloading. Assuming that the elastic behavior
(unloading) at every point is characterized by a positive definite tensor. the condition (I) is
always fulfilled (Raniecki. 1979: Raniecki and Bruhns. 1981) if a much more restrictive
condition holds. requiring that at every point of the body the second order work !l' is
positive for every strain rate and corresponding stress rate (2):

2' = ~d:i > O. (3)

Equation (3) will be referred to as the local criterion for uniqueness. The central property
of the local criterion is the n:striction it imposes on the constitutive klw (2). In fact.
substituting (2) into criterion (3). an equivalent condition of positive definiteness of the
constitutive rate tensor n is obtained:

x:D:x>O. VxeSym-{O}. (4)

The above requirement restricts only the tensor () during c1astoplastic loading.
A condition we~tker with respel.:t to the criterion (3), but sullicient to exclude strain

10l.:alization, may be obtained by specializing tensor x in (4) to a particular rate deformation
mode defined by a tensor product g ® n of a vcrsor n and a vector g. This yields the
requirement of the positive definiteness of c:very acoustic tensor n' D' n, i.e. :

g ® n: (): n ® g > 0, Vg i' 0 Vn 31 n 1= 1. (5)

The requirement (5) is the condition of strong elliptidty of the system of differential
c:quations governing the local incremental equilibrium.

If the constitutive tensor () is symmetric, the condition (5) is equivalent to the require­
ment that all eigenvalues of the acoustic tensor arc real and strictly positive. The latter
condition was stated by l\landcl (1966) as a threshold to material stability. A particular
type of non-uniqueness in the form of the strain localization into a planar band (Rice,
1976: Rudnicki and Rice. 1975: Rice and Rudnicki. 1980: Vardoulakis, 1976) is attained
when the system of dilferential equations governing the local rate equilibrium suffers a loss
of ellipticity:

det n' D'n =0 (6)

where n is the versor normal to the planar band.
In the restricted CHse of pl.toe strain isochoric motion for associative plasticity. all the

above loc.tl criteria collapse into one (Prevost, 1987). The relationships between the criteria

t Thc critcrion (1) may he ootained using the classical argument of Kirchhoff for the infinitesimal clastic
theory (sec. e.g. Gurtin. 1972. pp. 102-105).
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GLOBAL CRITERION

SUFFICIENT CONDITION
FOR UNIQUENESS

J~i:J:Mdv>O
v

(Hill 1958)

LOCAL CRITERIA

LOCAL SUFFICIENT CONDITION
FOR UNIQUENESS. I.E.:

POSITIVENESS OF SECOND ORDER WORK

i:J: E >0

equivalent to positive definiteness
of the constitutive tensor 0

.for I8l n : D : n I8l g > 0
V'g~O,V'n)lnl=1

Strong ellipticity of differential equations
governing the local rate equilibrium

LACK OF LOCALIZATION OF DEFORMATION (Rudmcki ana Rics1975)
ELLIPTICITY OF DIFF. EQS FOR RATE EQUILIBRIUM. REAL SPEED OF

PROPAGATION OF ACCELERATION WAVES

(HI1/1962. in the sense of Hadamard (1903))

(1) for plane isochoric motion.
(2) for associative plasticity.
(3) only if all eigenvalues of tensor nOn are real.
(4) for associative plasticity.
(5) for associative plasticity, constrained kinematics over the

whole boundary of the body and homogeneous conditions
bofore bifurcation (Rice 1976)

Fig. I. Relaliunships h.:lw.:.:n .:rit.:ria for uniqu.:n.:ss, s.:.:ond oru.:r work, strong dliplidty, Mandel's
slahilily and lu.:ali/atiun.

corresponding to the <tbove discllssed thresholds arc represented in Fig, I. While a double
<trrow in the figure denotes <tn identity, <t single arrow means an implication. Numerical
c<tptions describe conditions under which the implications take place,

This paper investigates the relationship between the criteria for lack of localization,
and for positiveness of second order work. The two criteria will be discussed in the context
of non-associative plasticity. In non-associative plasticity the plastic strain rate tensor
i" = i -i" is expressed as:

i P = Ap, (7)

where the second order tensor P, defining the mode of the plastic strain rate, is generally
different, but assumed to be co-axial with the yield surface gradient Q. The assumption of
co-axiality of tensors P and Q, which is essential for further derivations, is met in most of
the known non-<Issociative plasticity rules. The tensor i" represents the clastic strain rate
and the scalar A is referred to <ts the plastic multiplier.

The stress rate may be related to the total strain rate i as:

subject to the conditions:

Ii = E:e-AE: P

A ~ 0, f ~ 0, fA = 0,

(8)

(9)

In eqn (8), E is the fourth order isotropic clastic tensor. The yield surface J(a,k) = 0 is a
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smooth function of stress and of the plastic isotropic hardening parameter k. depending on
the plastic strain history.

The elastoplastic stiffness tensor D. obtained from egns (8) and (9). is:

(P: E) ® (Q: E) .o = E - -' - . . subject to (9).
II+P:E:Q

When the plastic hardening modulus II:

(10)

(11 )

is positive. strain hardening occurs. while the material exhibits softening if II is negative.
When II is zero the case of perfect plasticity is recovered. Softening is assumed not to exceed
the snap-back threshold. i.e. the hardening modulus must be such th.H II> - P: E: Q. A
value of II = II:, denotes (sec. e.g.. Rudnicki and Rice. 1975) the threshold between pro­
cesses for which the localization is excluded (II > II:,) for every deformation rate and those
for which it is not (II ~ II~,). An analogous threshold II = II;, is used to delimit between
processes (II > II;',) for which the uniqueness of response is ensured for every deformation
rate field and those for which it is not (If ~ II:',) (Mroz. 1963).

Following the definitions (3) and (4) and using the constitutive relationships (7)-(11).
it W.IS shown that the threshold at which the loss of positiveness of the second order work
occurs is determined by the critical plastic hardening modulus (Maier and Hueckel. 1979;
lIueckei and Maier. IlJ77):

11;', = HJ<P:E:P)(Q:E:Q) -P:E:QI· ( 12)

For associative plasticity (P = Q) the critical hardening modulus (12) becomes zero. The
def'ormation rate at which second order work reduces to zero is:

( 13)

The localization of deformation into planar bands takes place when a str.lin rate dis­
continuity occurs across the plane of the band. In order to be kinematically admissible. the
strain rate discontinuity must satisfy the Maxwell compatibility conditions (see. e.g.,
Thomas. I% I) :

[i ~ = 1(g ® n +n ® g) ( 14)

where i ~ indicates the discontinuity. n is the unit vector normal to the b'lnd and g is the
vector which dctines the discontinuity in the velocity derivative.

The principal components of the strain rate jump tensor (14) can bc detcrmincd once
vectors nand g are found. if I:, ~ 1:1 ~ 1:3:

hli = (lgl+g'n)/2

[1:1 II =0

[i:lll = (-igi +g' n)/2. (15a~)

Depending on the directions of vectors nand g. two principal typcs of strain rate dis­
continuity occur. which arc referred to .lS split mode and shear band. Split modc takes place
in the case of co-axiality of vectors g and n. This includcs both tcnsile and compressive
strain rate across the band. Shear band takes place in the case where g and n are not parallel.
The hardening modulus at which localization takes place in the given direction. specified
by the versor n orthogonal to the band. is (Rice. 1976):
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r ]-'~(D'P'D-tr PHD'Q'D-trQ)
I-I'

(16)

where G is the elastic shear modulus. I' is Poisson's ratio and tr indicates the trace of a
tensor.

The velocity discontinuity vector g. corresponding to a given D. is a right eigenvector
of the acoustic tensor D. 0 . D. corresponding to a null eigenvalue.

I r
g = 2D' P- ---(n° p. n}n+ -- (tr P}n.

I-I' I-I'
( 17)

To obtain the critical hardening modulus H:r- a constrained maximization of <16) over all
possible directions n mllst be performed:

fI:, = max fll(D). subject to IDI = I.
n

( IS)

It may be observed that the expression for the \:riti\:al hardening modulus (18) \:annot be
given explicitly in an arbitrary rderence system. i.e, II:, is coupled with the vector D.
NumeriGtl pnKedures were developed (sec. e.g.. Ortiz er al.. 1l.ni7) to arrive at the value of
the critical hardening modulus.

In the following section it will he shown that. if a suitahle reference system is employed.
the critical modulus and the vector n may he reduced to an explicit. Le. decoupled. form.

l LOCAUZATION CRITLRIA FOR 3-D. PLANE STR:\IN ANI> PLANL STRESS CASLS

An explicit expression for the critical hankning modulus will first b\: derived for the
general \:ase. i.e. unwnstr.. ined. kinematics. Spe\:ial forms will be subsequently deduced for
constrained c.lses. namely those of plane strain and pl.ll1e stress. Analogously. in the next
section. plane strain and plane stress specializations will be obtained !()r the criterion of
second order work.

Three-dimel/siol/al elise
First. the constraincd maxlIl11zation problem (18) is redw.:cd to the unconstrained

maximization of the Lagrangian fUI1l.:tion :

L(n.m == 2G[2n,p'Q.n-<n,p.nHn' Q .n)-p:Q

I' ]- ,.-- (n'I)'n - tr PHn'Q' n-tr Q) -/f(n' n-I)
I-I'

where II is a Lagrangian multiplicr.
The cxtrcma of (16) arc thus charactcrized by the conditions:

(l9)

The conditions yield:

ilL
-- = 0 andtn

i'L
(~/J = O. (20)
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I v f3
2n' P'Q- --[(n' Q' o)n' P+ (0' p. o)n' Q]+ - [(tr Q)o' P+(tr P)n'Q] = -0

I-I' 1-1' 2G

n·n=1. (21 )

Choosing now the principal axes of stress (denoted by i.j. k) as the reference system. eqns
(21) may be written explicitly in the form:

I I' {J
"211, P,Q, --- [(0' Q' o)P, +(0' p. n)Q,]lI, + -I- [(tr Q)P,+ (tr P)Q,lll, = "-e"'

I-I' -I' _

(i = I. "2, 3 not assumed)

n' 0 = I ("22)

where the index i refers to the components in the reference system of principal stresses. The
solutions of ("22) yield all extrema of (16), The extrema correspond to dilTen:nt inclinations
of the band. characterized by versoI' n as follows:

(i) none of the components of the versoI' n is null:
(ii) one of the components of the versoI' n is null:

(iii) two components of the versoI' n arc null.

(n order to lind the maximum (I X) over all extrema. solutions of ("22) corresponding to the
ahove cases have to he found and compared, Let us now specify all extrema for the cases
(i) (ii i).

(i) NOflC' of't!le ('Olll/W1U'flts of't!le I'asor n is flllll. System (2"2) admits in this c~lse a
unique solution if and only if:

(23)

when: indices 1-3 indicate principal components. Note that the determinant ~ always
vanishes in the case of associative plasticity and for a special non-associative flow rule of
the type (Rigoni and Hueckcl. 1990b):

p = Q+~I (24)

in which ~ is any scalar function and I is the identity tensor.
The now rules of type (24) are used in the description of zero-dilatancy pressure

sensitive materials, e.g. the Jenike-Shield (1959) flow rule, in which the Drucker-Prager
yield function and Huber-von Mises plastic potential arc employed.

The three following sub-cases need to be examined for case (i):

(ia) ~ #- 0;
(ib) ~ = 0, Q, = Q, and P, = P,;
(ic) ~ = 0, Q, = Q, = Qk and P, = P, = Pk.

Any other combinations of~ ~lIld components of tensors P and Qcorrespond to impossible
solutions of system (22). The following solutions arc found for the above mentioned sub­
cases:

(ia) ~ #- O. System (22) admits a unique solution. for the three components of the
versoI' n (Rigoni. 1991):
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, I
nj = ;i {2a(P: - P,)(Q: -Q,) -h[(P, - Pd(Q: -Q,)+(Pz - P.d(QI -Qd]J

, I
11:;;:: fJ. :'2h(P,-Pd(Q,-Qd-a[(P,-Pd(Q:-Qd+(P:-Pd(Q,-QdJ:

Ilj = I 1l'i -11: ('25)

where:

To be an admissible solution. the obtained values of Il~. II~ and Iti must be internal to
the inverval [0. I]. If this condition is not met. the extrema of hardening modulus are to be
searched in the solutions defined by cases (ii) and (iii) only. The hardening modulus.
corresponding to the versoI' with the components defined in (25). C.1Il now be easily obtained
by suhstitution intn eqn (16).

(ih) fJ. = 0.0, = 0, alld P, = PI' Tensors Q amI I) arc symmetric with respect to axis
k. Then the only component of n \vhich may be determined from ('2'2) is that along the
symmetry axis k. i.e. versoI' n spans a cone with axis k. The components along i and j are
not tktermined. Thus system ('2'2) now admits ·f., I solutions. For any pair 11, and II, the same
extremum value of (16) is obtained. The extremum ( 16) and the corresponding cOlllponent
1iJ. lllay he found. assuming one of the components of versor n along the i or) axes is zero
(case iiI. If the ohtained extremum is found to he maximal over all the extrema defined hy
('2'2). the numher of possihlc localization hands becomes infinite.

(ic) L\ = n. Q, ;;:: Q, ;;:: QI.. ([lid P, ;;:: P, = 1\ .Tensors Q a nd I) are symmet ric wi th respect
to all principal .Ixes. The inclination of the localization hand is indeterminate. System (22)
now admits I~' solutions. The critical hardening modulus may be found. withollt loss of
generality. assuming two of the components of versoI' n to be zero. Fmm (17) it can he
seen that the localization mode corresponds to .1 splitting discontinuity.

(ii) Ol/e 0/ lite ('ol/l/IOI/elll.\' 0/ lite l'ersor n is Ill/II. The band normal lies in one of the
planes formed by two of the princip;tl axes of stress.

Suppose that 11, ;;:: O. AnalYl.ing the determinant of (22) it may be seen that in this case
solutions arc possible in the following two sub-cases only:

(iia) Q, # Q, and P, # 1',:
(iib) Q, = Q, and 1', ;;:: P"

The following solutions are found for the above mentioned sub-cases.
(iia) 0. # Q, ([/1(/ P, # PI" Tensors Q and I) are not symmetric with respect to the axis

k. System (22) is reduced to two equations for the two unknown components of versoI' n.
which become:

II,~ = (1- ,.) P,Q,- P,Q,
(1',- P,)(Q,-Q,)

(i.j. k not summed). (28)

The value of the corresponding extremum of the hardening modulus is found from (16)
and the known components of vector n:
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(i, j. k not summed). (29)

Note that. in order to yield an admissible solution. the components of tensors Q and P in
eqn (28) must be such as to give a value of nl internal to the interval [0. I]. When this
condition is not met. the components (28) and the corresponding value of the modulus (29)
are inadmissible. Thus a non-analytical extremum must be searched. corresponding to
case (iii).

Vector g. corresponding to the components (28). is given by the expressions:

{
I, v}

9, = 2P,- -I-[II.-(Pj -P,)+PJ+ -\-tr P IIj
-\, -\'

{
I, v}9 = 2P------[II.-(P,-P)+P}+ ---trP n

I I I-v " I-v '

(30)

In order to obtain all the extrema of the hardening modulus. the index k has to be permuted
between I and 3.

(iib) Q,-QI attd P, = Pl' Tensors Q ,lOd P arc symmetric with respect to axis k. The
components along i andj arc not determined. Thus system (22) now admits 00 I solutions.
For any pair fl; and fl, the same extremum value of (16) is obtained. The extremum (16)
may be found assuming one of the components of versor n along the i or j axes is zero (case
iii). If the obtained extremum is found to be maxim.1I over all the extrema defined by
(22), the number of possible localization bands becomes infinite. The localization mode
corresponds to a splitting discontinuity.

(iii) Two components of the l'ersor n tlr/! flllll. The band normal is orthogonal to two
of the principal axes ofstress. Suppose that n, = \. n1 = n. = 0, the extrema of the hardening
modulus are given by the expression:

(31)

where the indices. not summed. are to be permuted between I and 3 in order to obtain all
the extrema of (16). Vector g has the components:

I'
g = P+ -'--(P+Pd 9j =9. = O.
~ t J I-v J •

(32)

From the obtained vector g it is seen that the localization mode corresponds to a split mode
discontinuity.

To conclude it should be emphasized that the critical hardening modulus for local­
ization (18) is obtained by finding the maximum over all the presented extremal solutions.

Examining the above cases it may be seen that when tensor P takes on the particular
form (24). and excluding the special cases of infinite solutions. the band cannot form unless
one of the components of its normal versor is null in the principal stress coordinate system.
The above also holds in the case of the associative flow rule. as discussed below.
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Case ofassociatil'e plasticity
For associative plasticity. P = Q. case (i) is a priori excluded. Case (ii) reduces to:

n/ = I-n,'. nk = O. (33)

When components (33) are internal to the inverval [0. I]. the corresponding extremum is:

HI = - 2G( I + \')Q; .

Vector g is finally obtained from (17) as:

9, = (Q,- Q)fl,

!I, = (Q,-Q,)II, . .ch = 0 (jnot summed).

From the obtained vectors nand g. eqns (15) yield:

[fo,] = Q,+\'Q,

[I:,~ = Q,+I'Qk

h~ = o.

(34)

(35)

(36)

When the components (33) arc admissihle for at Icasttwo permutations of k hetween
I and 3. the critical h.mlcning modulus (18) is one ofextrema (34). I f two sets ofcomponents
(33) arc not admissible, the critical hardening modulus is also to be searched by examining
case (iii). i.e. :

(37)

corresponding to fl, = I. flJ = flk = O. The localization mode is therefore a split discontinuity.
From eqns (34) and (37) it is easily seen that the hardening modulus. corresponding

to strain localization. is never positive for associative plasticity. From eqn (34) it can also
be noted th.1t the normal vector to the hand lies in the plane formed by the principal stress
axes a, and a,. when the components (33) arc admissihle. It therefore appears that. when
the minimum value of Q1 corresponds to the direction of the minimum principal stress and
the corresponding components of n arc admissible. the normal to the band is orthogonal
to the minimum principal stress direction. This may take place. as shown by Rudnicki and
Rice (1975) for the Drucker-Prager yield surface. but not for the Huber-von Mises yield
surface.

Plane strain aflel plafle stre'.fS conelitions
In the case of plane strain. as opposed to the general unconstrained case [eqns (25)­

(37)]. the position of the shear band is assumed to be a priori constrained; namely the
normal to the band is assumed to lie in the plane of deformation. In such a case solutions
(28)·-(37) obtained for 3-D deformations in cases (ii) and (iii) hold true. assuming that
direction k. normal to the plane of deformation. is a principal direction of stress. Case (i)
is a priori excluded.

For plane stress the following circumstances have to be taken into account. First.
following Thomas (1961). the solid is considered as two-dimensional. Therefore, it is
assumed that the band reduces to a line and vectors n and~. on which Maxwell compatibility
conditions (14) are imposed. h.lve two eigenvalues only. Moreover. due to the condition of
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the two-dimensional stress state. the elasticity tensor takes on a particular form. Thus. under
the above conditions. the maximization problem (18) reduces to the following expression:

H;r = max :2G{2n' P'Q' n-(n' p. nHn' Q' n)- P: Q- ~'(n'Q'n-tr Q)(n' p. n- tr P)]}
•

(38)

subject to Inl = I.
Vector g is expressed by:

g = 20' P-(1 +~')(o'P'o)n+v(tr P)o. (39)

In eqns (38) and (39) the index range is 1-2 and tensors P and Q now have only two
eigenvectors.

We shall follow here the maximization procedure discussed in the 3-D case. However,
the solutions of (38) may now be categorized into the following three cases:

(I) Q, i:: Q, and P, i:: P,;
(2) Qf = Q, and P, :/:: P, or Q, :/:: Q, and P, = P,;
(3) Q, = Q, and P, = PI'

We now discuss them in detail.

( I ) 0, :/:: 0 1 and P, :/:: PI' Tensors Q and •• do not have symmetries and the solution of
OS) is:

(40)

where indices. not summed. denote components in the reference system of principal stresses.
The two terms in brackets in (40) refer respectively to the case or the two non-zero
components and or only one non·zero component of versor o.

If the first of the two terms in (40) gives the maximum H;r. then the components of
the versor 0 and of the vector ~ are:

91 ={2PI -(I +~')[lIi(PI - P2)+ P2]+~'(PI + P2)}II\

92 = {2P2 -(1 +~')(ni(P'-P2)+P2]+V(PI+P2)} f1 2'

(41 )

(42)

If tensors Q and Pin (41) are such that the values of components of versor n are external
to the interval [0. I]. the corresponding value of the hardening modulus is to be rejected as
non-admissible.

If the second term in H~r maximizes (40), then the components of versor n and vector
Jt arc:

fl, = I. " j = 0 (43)

9, = P,+vPj • 9, = O. (44)

Consequently. through (17), the corresponding localization mode is a split mode dis­
continuity.

SJIS ~8:2-r
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The deformation rate jump inside the band may be obtained from expressions (15a)
and ( 15c). together with the value of versor n and vector g.

(2) QI = QJ and PI #- p) or QI #- Q) and PI = Pr [n this case the only possible solution
occurs when the band is orthogonal to a principal stress direction. Therefore the critical
hardening modulus is given by the second term on the right-hand side of (40).

(3) QI = Q, and PI = P)' [n this case all the inclinations of the band are possible. The
critical hardening modulus is given by the second expression on the right-hand side of (40).
The localization mode is a split mode discontinuity.

Associatire plane stress plasticity
For associative plasticity. eqns (40)-{44) reduce to:

H:r = max [0. - 2G( 1+v)Qn.
1= 1.:

(45)

Therefore the maximum corresponds to a null hardening modulus. if the corresponding
band indination is admissible:

, Q,
IIi =QQ',- :

Vector g results:

n~ = 1-nf. (46)

In this case eqns (15a) and (15e) yield:

(47)

(4X)

If tensor Q is sU\.:h as to give wmponents (46) (induding the case Q, = Q:) external to the
interval [0, IJ. then the critical hardening modulus is given by the second expression in
brackets in (45). This corresponds to the band indination defined by (43) and to the
wrresponding vector g given by (44) (where I) is substituted by Q), The localization mode
is a split mode discontinuity,

('IIIIlIllCIll,I' : perkcr plasticity. as.weiatil'l' jlml' mIl'
In the case of plane strain. we observe the following.

(i) At collapse. only plastic strain rate occurs. Thus Q. must vanish at collapse and
therefore. from eqn (34). H:r = O. It is then concluded that. according to an incremental
theory such as that described through (7)-( II), collapse may be attained with the formation
of discontinuity b,lI1ds,

(ii) In the case of zero volumetric plastic strain. the additional condition Q, = -Q,
must hold at collapse. The resulting shear b,lI1d always has an admissible indination equal
to 45 with respect to the princip.11 maximum stress dirL'Ction. as seen from (33).

In the case of plane stress. we observe the following.

(iii) Also in this case the classical result for thin sheet uniaxial tension of Thomas
(1961) is recovered. In fact. for the Huber-von Mises yield criterion the shear band is
inclined at 54.73 to the direction of principal tensile stress. as seen from egn (46),

To conclude. it should be noted that the expressions (25)-(37) for the localization
hardening modulus If:, and indination of the band arc a generalization. to any form of the
yield surl~lce and of the non-associative flow rule. of the result obtained earlier by Rudnicki
and Rice ( 1975) for Drucker-Prager and Huber-von Mises yield conditions with a particular
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non-associative flow rule. The expressions obtained are given in an explicit (decoupledl
form and the critical hardening modulus and the localization mode may be found without
numerical procedures. Equations (38H48) furnish in turn a specialization of the critical
hardening modulus for localization and band inclination for cases of plane strain and plane
stress.

J. SECO:-;O ORDER WORK CRITERIA FOR )-0. PLANE STRAIN A:-;O PL\NE STRESS CASES

The threshold corresponding to zero second order work (Mr6z. 1963). as given for
general unconstrained kinematics (3-D) by Maier and Hueckel (1977. 1979) in terms of a
critical hardening modulus. is rewritten in eqn (12).

In the present section this criterion is specialized to plane strain and plane stress
conditions.t As may be seen from eqn (13) the deformation rate for which the zero second
order work is attained is. in general. three-dimensional and thus may violate the plane
strain condition. Therefore. an additional constraint. namely that of vanishing of the
prescribed components of the strain rate must be imposed on (4).

In plane struin. the second order work is produced only by the in-plane deformation
rate components. i.e. :

(49)

and thus:

(50)

where D' is the dastoplaslic tensor in plane slrain:

(51 )

In el(n (51). E' is lhe isotropic dastic lensor in plane strain and lhe scalar II .. is deli ned ;\s:

or:

JIll = i.(tr P)(lr Q)+ 2GP: Q

where i. is Lame's constant defined as i. = 2Gj(1 - 21'),
Fin;tlly, in eqn (51), tensors Nand MeIR 2 ® 1R 2 arc defined as:

(52)

(53)

(54)

when: free indices runge between I and 2. but lhe dummy indices mnge is I 3.
For every clastic incremental process (A = 0), second order work is always positive,

because I)' reduces to E', which is positive definite, For the elastoplastic process, loss of
positive dcliniteness of plane strain tensor 0' may be determined through a minimization
of the second order work (following Maier and Hueckcl. 1971»:

subject to:

min Hi:E':r.-r.:M)·
•

(55)

t It may he shown that in planc str;lin and pl,lIlc strcss luss of sco:und ord.:r work I"llsitivc dclinitcncss for the
o:omp,lrison solid "in loading" oco:urs ,It the same ..:riti<:al valuc of hardcning nllltlulus as for the hest choscn
Raniecki's o:omparison solid. Therefore. only the comparison solid "in loading" needs to be considen:d.
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i: i\ = H-Hn. (56)

A = I has been assumed in eqn (55). because only the sign of second order work matters
for positive definiteness of D'.

The optimal tensor i" that minimiles (55) is:

where:

('J = (~i': C: 1\1- H + H"W";: C: i\) . I

is a Lagrangian multiplier and C' is the plane strain elastic compliance tensor:

(57)

(58)

(59)

where (\ is the Kronecker delta symbol.
Zero second order work (50) produced by the strain rate (57) occurs at the value of

the hardening modulus 1/;', found as:

/I:', = ~[,(:\I: (": 1\1)(1': (":;\/) +- N: ("::\1 + 2/1,,1.

The quadratic forms in eqn ((1()) may he speciali/ed via (59) ;lnd (Sol) as:

1\1:(":;\1 = i,(/'.. )~+2(iI',J'" -ol(iI',.I'"t·2G(1 -I')/'i,

N : (" : N = i.( (J.. )~ + 2(iQ" Q" - olG{J, .Q" +- 2(;( I - dQ';,

l' : (" :;\1 = i.(/',,)( (JII) +2(;1'" Q" - olG/',,{J, \+ 2G( 1 - 1')/', ,Q"

U.j = I. 2. )).

The strain rate (57) that makes the second order work equal to zero is flHllld to be:

((,0)

(61 )

I:" = :l[C': N)(;\I: C': 1'1)/(1': C': N)+ C': MI. V:l E iR - {O;. (62)

The case of plane stress docs not requin: particulal"l:akulations. In Llet. the deformation
for the plane stress case is not constrained and eqns (12) and (1)) still hold. The only
restriction is that now the fourth order elastic tensor E is that of plane stress and P and Q
have only two principal components, Thus eqns (12) and (I)) arc replaced respectively by:

where :J = 21'(;/( 1- I').

I'/al/c .1'1rllill lIlId fI/lIlIC .1'1 ress lIS.Weill1il'c fI/lISI icily

[n the case of plane strain associative plasticity. elJns (60) ;1I1d (62) reduce to:

1/:', = 2G[ - 2Q, 1 Q, , + (I - I')Q i ;J (i = I. 2. 3)

to" = C' : N or f.:; = I'Q 11 c)" + Q" (i.j = I. 2).

(65)

(66)

Note that. if eqn (65) is expressed in the principal strcss reference system. it coincides with
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Fig. 2. Ranges of coil1l:idem:e l.f ,rih:ria for lo,alization and for second l1fdcr work in the ,ase of
- the Huh<:r-von Mises wndilion in plane stress.
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eqn (34) in whidl k = 3 is assumed as the direction normal to the plane of deformation. A
coincidence is also observed netween eqns (66) and (36). Thus it is concluded that the
formation of shear nands occurs at the critical modulus for the loss of second order work
positive ddiniteness.

For phlne stress associative plasticity. eqns (63) and (64) reduce to:

if) = IlQ. V:lEIR-:O}.

(67)

(6X)

Thus. also for plane stress associative plasticity the critic:11 hardening moduli for shear band
formation and for loss of second order work positive dcliniteness coincide [sec eqns (45 -.­
lirst term) and (41<). eqns (67) and (6X)I.

The :lhove coincidences h:lve the following implicutions. The v.ulishing of the second
order work in plane strain and phllle stress associ:ltive plasticity occurs simultaneously with
strain localization in cases when the solutions (34) and (45-1irst h:rm) arc admissible. that
is when a shear band forms. The localiz:ltion and second order work criteria ulso coincide
when a split mode is associated with an analytical maximum. For instance. coincidence
hctween the two criteria always oceurs in the case of plane strain for the Huber-von Mises
yield function. if the intermediate principal stress is orthogonal to the plane ofdeformation.
However. for the plane stress the coincidence occurs only on the portions All and CD of
the yield curve (including points AIlCD; Fig. 1).

The ahove means that in plane. associative c1astoplasticity. shear band formation
always coincides with the loss of second order work positive ddiniteness. while this may
not be the case when a splitll10de localization takes place. In other words. during a loading
process under homogeneous conditions only two possibilities may urise at the instant of
localization. excluding reversal of the sign of the second order work:

(i) A shear band forms. Then the localization criterion coincides with the criterion or
the second order work and any loss of uniqueness is excluded prior to band formation.

(ii) A split mode discontinuity occurs. Then the threshold of the second order work
has heel1 attained before. or at the instant of. split mode localization.

In the case examined by Hill and Hutchinson (1975). corresponding to large dis­
phlcement gradients in plane strain associative plasticity. an infinite number of diffuse
bifurcation modes can precede loc:llization into shear bands. However. this loss of unique­
ness before localization may be shown to disappear when the effects due to large dis­
placement gmdients arc ncglected.

Thc appearance of diffuse birurcution modes prior to shcur band formation is possible
in general 3-D small deformation problems and/or for non-associative plasticity. Therefore
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a gap exists between the thresholds for second order work and for localization. Hence. in
the above sense. alternative bifurcation modes may occur at hardening moduli between
those corresponding to these two events.

5. CO:-':CLlISIONS

The results obtained in the preceding sections pertain to the relationships between
thresholds for uniqueness. bifurcation and stability as presented in Section 2.

The following conclusions have been reached concerning associative and non-associ­
ative elastoplasticity in 3-D. plane strain and plane stress. The first group of results obtained
was inspired by the possibility for generalization of some of the conclusions regarding the
localization criterion obtained by Rudnicki and Rice (1975) for the Drucker-Prager yield
condition (H uber -von M ises as a particular case) with the non-associative flow rule.

( I) Starting from the condition of localization given by Rice (1976). an explicit solution
for the critical hardening modulus is found. This result concerns any smooth yield surface
and any direction of plastic tlow. The existence of an explicit solution makes it possible t()
directly inspect all possible localization modes.

(2) It is confirmed that the critical hardening modulus for strain localization is never
positive for associative plasticity (Rice. I<.n()).

(.1) The normal to the band (excluding the cases of infinite solutions) is perpendicular
to a principal direction of stress. This is always true for associative plasticity and for a class
of non-associative flow rules (e.g. Jcnike and Shield. (959). but may not be the case for
other non-associative plastic models. Moreover. the normal to the shear band may be
onhogonallo thc dircction of the minimum principal stress.

(-l) A spcciali/ati(lll of the niterion of sccond order work positivcness to planc strain
and planc strcss shows that thc critical hardening modulus is never positive in plane strain
and is equal to lem in plane stress for associative plasticity.

(5) A speciali/ation of the criterion for strain localization to plane stress and plane
strain shows that. for thc associative tlow rulc. the critical hardening modulus for strain
locali/ation into shear bands coincides with the critical hardening modulus at loss ofpositivc
definitencss of second ordcr work. In contrast. localization into splitting modes may not
occur at the threshold of second order work. When the conditions arc met for the coincidence
of the criteri;1 of second order work and localization:

non-uniq uencss cannot occur in a boundary value problem before lo~alization of
Jefoflnation into a planar band;
loss of positiveness of second order work. loss of strong ellipticity and loss of ellipticity
(i.e. strain locali/ation and vanishing of the speed ofa~cderationwaves) are equivalent
criteria .

.·I<kllo"I'·'/'1<"II/<"III' . D. Illgoni wishes to Ihank Prof. A. Di Tommaso and Prof. E. Viola (Uni",:rsily or Bologna)
I'or having eneouraged his slay al Duke University. II.: is also gralefullo the (halian) Minislry of Univcrsily and
Scientific and Technologic:.1 Rcsean:h.
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